@air
2025-03-26

How to ensure the color accuracy of printed matter by controlling the cleanliness of compressed air

Correlation mechanism between compressed air cleanliness and color accuracy

In offset printing, gravure printing and digital printing, the cleanliness of compressed air directly affects the following key aspects:

  1. Inkjet head contamination
    • Oily particles of 0.1-1μm will block the ink jet holes (violating the ISO 21667 ink jet aperture tolerance standard of ≤±2μm), resulting in ink drop volume deviation of ≥5% and color density fluctuation ΔD of ≥0.15.
  2. Optical sensor misjudgment
    • The deposition of aerosol on the CCD mirror surface (thickness ≥0.3μm) causes the measurement error of the chromatic aberration meter ΔE≥1.2 (exceeding the ΔE≤0.8 specified in ISO 12647-7).
  3. Anilox roller clogging
    • Oil stains react with water-based inks to form colloidal substances (particle size ≥10μm), which increases the blocking rate of mesh holes by 20%, resulting in a printing dot expansion rate of>18%(FOGRA 2024 research data).

Core technical solutions for cleanliness control

1. Multi-stage filtration system design

  • pre-filtration
    • Use an ISO 16890 ePM1 95% filter to intercept particles ≥1μm (reduce the risk of nozzle clogging by 83%).
  • precision filtration
    • Activated carbon + molecular sieve composite filter element (complying with ISO 8573-4 oil vapor adsorption standard) reduces the oil content to ≤0.001mg/m³.
  • terminal sterilization
    • 254nm UV sterilization module (verified by ISO 15714 UV dose) ensures that microorganisms are ≤0.1 CFU/m³.

2. Real-time pollution monitoring

  • Online oil detection
    • PID sensor (photoionization detection, sensitivity 0.001ppm) is adopted, which meets the VDI 2083 clean room air standard.
  • Particle count warning
    • Laser particle counter (0.1μm resolution, calibrated according to ISO 21501-4), when exceeding the standard, the standby air source is activated within 0.5 seconds.

3. Optimization of material compatibility

  • Pipe inner wall treatment
    • Electropolish 316L stainless steel pipe (roughness Ra≤0.4μm, complying with ASME BPE-2022 standard) to inhibit the growth of microorganisms.
  • Seal upgrade
    • Perfluorinated ether rubber (FFKM) replaces traditional NBR materials and withstands 120 ° C high temperature sterilization (passes the ASTM D2000 material aging test).

Core cleanliness parameters and verification standards

control dimension technical indicators international standards Color accuracy impact
oil content ≤0.001mg/m³ (detected by gas chromatography) ISO 8573-1 Class 0 Ink droplet volume fluctuation rate ↓ to 0.8%
particulate matter amount ≥0.1μm particles ≤100/m³ ISO 8573-2 Class 1 Control network expansion rate ≤12%
microbial levels Total bacterial count ≤0.01 CFU/m³ ISO 8573-7 Class 0 Avoid color cast caused by ink corruption
total hydrocarbon content ≤0.01ppm (FID test) ASTM D5504 Prevent poor curing of UV ink

Printing defects caused by uncontrolled cleanliness and cost model

fault type technological causes Economic loss (calculated at 10,000 sheets per hour)
Sprinkler blocked Accumulation of 0.5μm particles causes 30% pore size blockage Downtime loss is $1,200/hour, cleaning fee is $800/time
Excessive color difference Color density deviation caused by oil pollution ΔD≥0.2 Scrap rate ↑15%, annual loss of $520,000
material loss Ink pollution causes aluminum foil coil scrap rate to ↑8% Annual additional cost $180,000
increased energy consumption Filter pressure difference ↑30% increased call fee by $25,000/year Violation of ISO 50001 energy efficiency standards

Economic comparison of cleanliness optimization plans

programme initial investment 5-year total cost Improved color accuracy (ΔE↓) meet the standards
base filter $50,000 $120,000 0.5 ISO 8573-1 Class 2
precision filtration $85,000 $160,000 1.2 ISO 8573-1 Class 1
Clean entire process $150,000 $220,000 2.0 ISO 8573-1 Class 0
Sterilization level protocol $200,000 $280,000 2.5 ISO 8573-7 Class 0

note: The ΔE reduction value is based on the ISO 12647-2 standard test. The full-process cleaning solution can make the four-color overprinting error ≤0.03mm.


Implementation path and verification method

  1. system diagnostic
    • Use a Palltronic® Integrity Tester to test filter efficiency (compliant with ISO 29463).
  2. Process adaptation
    • High-precision printing lines of seven colors and above are mandatory with Class 0 filtration + ultraviolet sterilization.
  3. effect verification
    • Print UGRA/FOGRA digital measurement and control strips, and use an X-Rite iSis scanner to measure the delta E2000 color difference.
    • After the clean air system is put into operation, the ash balance deviation is required to be ≤1.5%(evaluated according to ISO 20654 standard).

summary

By controlling the cleanliness of compressed air to ISO 8573-1 Class 0 (oil content ≤0.01mg/m³) and ISO 8573-7 Class 0 (microorganisms ≤ 0.1CFU/m³) levels, printing color difference ΔE can be reduced by 65%, and nozzle maintenance costs can be reduced by 70%. Shanghai Granklin’s nanoscale filtration technology complies with the ISO 16890ePM1 99.95% standard, providing global printing companies with clean air solutions suitable for 1200dpi high-precision printing.

Welcome!

Related Articles:
@air
2025-03-19

Advantages of environmentally friendly oil-free compressors

In modern industrial production, the application of compressed air is more and more extensive, and the requirements for environmental protection are becoming more and more stringent. Although the traditional oil-lubricated compressor has been widely used in many fields, it has gradually been unable to meet the needs of modern enterprises for clean and environmentally friendly […]

@ghan
2025-03-10

The Difference Between Scroll Compressors and Screw Compressors

When it comes to choosing the right air compressor for your business, the decision often comes down to two types: scroll compressors and screw compressors. Both are known for their efficiency and reliability, but understanding their differences can help you make the best choice for your specific needs. Let’s dive into the key distinctions and […]

@air
2025-04-08

How to choose oil-free lubricated air compressor for precision optical coating

Precision optical coating background Precision optical coating is the core technology of high-end optical devices, involving the deposition process of nanoscale coatings such as anti-reflection films and filter films. According to the compressed air purity rating standard ISO 8573-1:2010, pressure…

@air
2025-03-21

How to Choose Water Lubricated Compressor for Cold Storage Dehumidification

In the cold chain logistics system, the reliability and energy efficiency of compressed air are the key elements to maintain the stable operation of low temperature environment. With its unique technical advantages, water-lubricated compressors have become the preferred choice for cold storage dehumidification and other low-temperature scenarios. Based on the demand of cold chain logistics […]

@air
2025-03-19

Analysis on Performance Advantages and Application Fields of Oil-free Air Compressor

With the continuous advancement of industrialization, the demand for compressed air in many industries continues to grow, and traditional oil-lubricated compressors often have problems of air pollution and high maintenance costs during use. In response to these challenges, oil-free air compressors have gradually become the mainstream choice in the market. Oil-free air compressors are widely […]